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ABSTRACT A new method for the size-distribution analysis of polymers by sedimentation velocity analytical ultracentrifu-
gation is described. It exploits the ability of Lamm equation modeling to discriminate between the spreading of the
sedimentation boundary arising from sample heterogeneity and from diffusion. Finite element solutions of the Lamm equation
for a large number of discrete noninteracting species are combined with maximum entropy regularization to represent a
continuous size-distribution. As in the program CONTIN, the parameter governing the regularization constraint is adjusted by
variance analysis to a predefined confidence level. Estimates of the partial specific volume and the frictional ratio of the
macromolecules are used to calculate the diffusion coefficients, resulting in relatively high-resolution sedimentation coeffi-
cient distributions c(s) or molar mass distributions c(M). It can be applied to interference optical data that exhibit systematic
noise components, and it does not require solution or solvent plateaus to be established. More details on the size-distribution
can be obtained than from van Holde–Weischet analysis. The sensitivity to the values of the regularization parameter and to
the shape parameters is explored with the help of simulated sedimentation data of discrete and continuous model size
distributions, and by applications to experimental data of continuous and discrete protein mixtures.

INTRODUCTION

The characterization of the size distribution of polymers is
one of the principal problems in the study of biological
macromolecules and of synthetic polymers. Numerous tech-
niques based on a variety of different principles have been
developed for this task, ranging, for example, from high-
resolution mass spectrometry, dynamic light scattering, an-
alytical ultracentrifugation, size-exclusion chromatography,
field-flow fractionation, to gel electrophoresis. Analytical
ultracentrifugation is the oldest of these techniques and has
been surpassed by others with respect to precision and
rapidity. However, for several reasons, a considerable in-
terest in the use of ultracentrifugation for the characteriza-
tion of size distributions still remains. First, it is attractive
for its theoretical simplicity and firm basis on first princi-
ples. Hydrodynamic theory (and thermodynamics in sedi-
mentation equilibrium) can be directly applied, and, for the
separation of subpopulations of different size, no interaction
with matrices, surfaces, or a bulk flow is required. Second,
it is experimentally powerful and very versatile: the mac-
romolecules are characterized in solution, and can be stud-
ied at a large range of concentrations, provided for by
fluorescence (Laue et al., 1997; Schmidt and Riesner,
1992), interference (Laue, 1994; Schachman, 1959; Yphan-
tis et al., 1994), absorbance (Giebeler, 1992; Hanlon et al.,
1962; Schachman et al., 1962), and Schlieren optical detec-
tion systems (Svedberg and Pedersen, 1940). It can be

applied to an extremely large macromolecular size range by
adjustment of the rotor speed. Third, analytical ultracentrif-
ugation experiments generally provide a large quantity of
data with relatively high precision, and a significant amount
of experience in this technique has been accumulated during
the last seven decades.

Both sedimentation equilibrium and sedimentation veloc-
ity methods have been used in the long history of the
characterization of the particle size distributions by analyt-
ical ultracentrifugation (Baldwin and Williams, 1950;
Bridgman, 1942; Fujita, 1962; Lechner and Ma¨chtle, 1992;
Mächtle, 1999; Scholte, 1968; Signer and Gross, 1934;
Stafford, 1992; Svedberg and Pedersen, 1940; van Holde
and Weischet, 1978; Vinograd and Bruner, 1966). Sedimen-
tation equilibrium analysis (Lechner and Ma¨chtle, 1992;
Scholte, 1968) seems intrinsically more problematic be-
cause of the difficulty involved in unraveling the sedimen-
tation equilibrium exponentials, and, in some cases, the
analysis has been constrained to parameterized model dis-
tributions (Lechner and Ma¨chtle, 1992). Sedimentation ve-
locity experiments provide a richer database, because they
observe the strongly size-dependent time course of migra-
tion, although here the size-distribution information is con-
voluted by the hydrodynamic properties of the particles.

Several different sedimentation velocity methods have
been developed. For very large particles where separation is
achieved during the time of the experiment, a well-condi-
tioned high-resolution analysis can be performed based on
the spatial derivative of the sedimentation profiles, dc/dr
(Baldwin and Williams, 1950; Bridgman, 1942; Fujita,
1962; Signer and Gross, 1934; Svedberg and Pedersen,
1940), or by the related method of observing the time course
of sedimentation at a single radial position (Ma¨chtle, 1999).
For smaller particles, however, diffusion broadens the sed-
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imentation boundary, which makes it more difficult to re-
solve subpopulations of the distribution. In this regime, an
established and very useful method for analyzing size dis-
tributions is the apparent sedimentation coefficient distribu-
tion g*(s) (Frigon and Timasheff, 1975; Rivas et al., 1999;
Schachman, 1959; Schuster and Toedt, 1996; Stafford,
1997), using dc/dr, or the more recently introduced time
derivative dc/dt of the sedimentation profiles (Stafford,
1992). However, the apparent sedimentation coefficient dis-
tribution obtained is convoluted by a Gaussian due to dif-
fusional broadening. An elegant and powerful method to
overcome diffusional broadening has been described by van
Holde and Weischet (Demeler et al., 1997; van Holde and
Weischet, 1978). Here, by extrapolation of the apparent
sedimentation coefficients of sedimentation boundary frac-
tions to infinite time on at20.5 scale, diffusion-free integral
sedimentation coefficient distributionsG(s) are obtained.

All the established sedimentation velocity methods for
size-distribution analysis are similar in that they use differ-
ent transformations of the sedimentation data that have been
analytically shown to reveal, under the condition of long
solution columns, the sedimentation coefficient distribution.
This approach has the virtue of a model-free analysis. In
general, if a model for the sedimentation behavior of mac-
romolecules is available, however, it is widely accepted that
an analysis by directly fitting the model to the raw data can
be superior in information and precision of the derived
parameters, although this is frequently computationally
more difficult. For example, more information can be ob-
tained from long-column sedimentation equilibrium exper-
iments of mixtures of ideal species by multiexponential
decomposition of the raw data in global analyses, as now
commonly in use, when compared to the more traditional
ln(c) versusr2 transformations of a single data set. The
present study is concerned with the problem of formulating
and exploring the properties of an explicit boundary model
for the size-distribution analysis in sedimentation velocity
experiments, based on numerical solutions to the equations
that govern sedimentation and diffusion, the Lamm equa-
tions (Lamm, 1929). This allows larger data sets in the
analysis of a single experiment and in global analyses of
multiple experiments, and the incorporation of prior knowl-
edge on the distribution, which, as will be demonstrated, can
lead to a better resolution of size distributions.

Numerical solutions to the Lamm equations and their use
for direct fitting of ultracentrifuge data have been developed
previously in several laboratories (among them, Cann and
Kegeles, 1974; Claverie et al., 1975; Cox and Dale, 1981;
and Dishon et al., 1966). More recently, enabled by the
increased computational resources, this became an efficient
and readily available tool for sedimentation-velocity data
analysis (Demeler and Saber, 1998; Schuck, 1998; Schuck
et al., 1998; Stafford, 1998). Lamm equation analysis can
take into account all boundary conditions of the finite length
of the centrifugal cell and of the effects of diffusion, but, at

present, can only be applied to a few discrete species. This
paper describes an extension of the Lamm equation analysis
for the characterization of continuous size distributions of
macromolecules. The problem is stated as an integral equa-
tion, and regularization is used for its numerical inversion.
The properties of the method in the application to discrete
distributions, and to broad, continuous size distributions are
explored.

THEORY

In the absence of interactions between the macromolecules
(or particles), the experimentally observed sedimentation
profiles of a continuous size distribution can be described as
a superposition of the contributions of each subpopulation
c(M) of particles with sizes betweenM and M 1 dM. If
L(M, r, t) denotes the sedimentation profile of a monodis-
perse species of sizeM at radiusr and timet, the problem
is described by a Fredholm integral equation of the first
kind,

a~r, t! 5 E c~M!L~M, r, t! dM 1 e, (1)

where a(r, t) denotes the experimentally observed signal,
with an error of measuremente. This equation is encoun-
tered in similar form in problems of polymer characteriza-
tion in many other techniques. In the following, first the
calculation of the kernelL(M, r, t) will be outlined, and then
a detailed description of the method used for inverting Eq.
1 by regularization will be given. This will closely follow
the method applied by Provencher (1982a,b) in the program
CONTIN.

Solution of the Lamm equation for a
monodisperse subpopulation

In the case of sedimentation velocity ultracentrifugation of
dilute solutions of a polymer, the kernelL(M, r, t) of Eq. 1
is the solution of the Lamm equation (Lamm, 1929),

dx

dt
5

1

r

d

drFrD~M!
dx

dr
2 s~M!v2r2xG. (2)

This partial differential equation describes the migration
and diffusion of a dilute solution of monodisperse particles
with concentrationx(r, t) in a sector-shaped cell under the
influence of the centrifugal field generated at a rotor angular
velocity v. s(M) and D(M) are the sedimentation and dif-
fusion coefficient of the particle, respectively. They are both
strongly dependent on the molar mass, and are related by the
Svedberg equation,

s~M! 5 D~M!
M~1 2 v#Mr!

RT
, (3)
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where r denotes the solvent density,R denotes the gas
constant, andT denotes the rotor temperature (Svedberg and
Pedersen, 1940). The partial specific volumev#M of the
solute may also be dependent on the macromolecular size,
but, in most cases, only weakly or even negligibly (such a
weak dependence will be indicated by the subscript M).

It can be seen at this point that the sedimentation velocity
analysis of particles with continuous size distributions is
complicated by the fact that it requires knowledge of at least
two functional dependencies on size: in addition toc(M), it
requires either the sedimentation coefficients(M), or, equiv-
alently, the diffusion coefficientD(M). Because the problem
of Eq. 1 is ill-posed, even if it is known how the sedimen-
tation coefficient changes with size, it seems impossible to
calculate both distributionsc(M) and s(M) from noisy ex-
perimental data. As will be described in the following, this
problem is addressed by assuming prior knowledge of the
partial specific volumev#M and the frictional ratio (f/f0)M

(i.e., prior knowledge of the hydrodynamic shape) of the
macromolecules, which will allow calculation ofs(M) and
D(M). (Only in favorable cases of very narrow monomodal
distributions or negligible diffusion does it seem feasible to
treat eitherv#M or (f/f0)M as a fitting parameter to be deter-
mined through the data analysis.)

Although v#M and (f/f0)M, in general, will also depend on
the macromolecular size in many cases, either reasonable
estimates or measurements can be made. In some cases, it
may be a reasonable approximation thatv#M and/or (f/f0)M

does not change with size; this may hold approximately
true, for example, for particles such as random coils of
polymers, lipid vesicles, emulsions, or, in a first approxi-
mation, even for mixtures of globular proteins. Alterna-
tively, a parameterized model for (f/f0)M could be used, such
as the model of rodlike particles at a length-to-radius ratio
that increases linearly withM. Similarly, if the particles can
be approximated by multisubunit assemblies with regular
geometry, values of (f/f0)M could be derived with the help of
hydrodynamic bead modeling (Bloomfield et al., 1967; de la
Torre, 1992). In some cases,D may be constant, allowing
the direct use of Eq. 3 to derives as a function of the
buoyant molar mass (an example of this, ferritin, is shown
below). Finally, the values forv#M and (f/f0)M may be mea-
sured in additional experiments for several fractionated sub-
populations of the particles, which then can be combined
with polynomial interpolation of the obtained values to
approximate (f/f0)M at any size. How possible errors inv#M

and (f/f0)M affect the calculated distributionsc(M) andc(s)
will be examined below.

Givenv#M, one can calculate the radiusR of an equivalent
sphere with the same volume as the particle by simple
geometrical relationships (Laue et al., 1992). This leads to
the minimum hydrodynamic frictional coefficient of an
equivalent sphere. With the shape information of the parti-
cle expressed through the frictional ratio (f/f0)M, the diffu-

sion coefficient of the particle then follows from the Stokes–
Einstein relationship as

D~M! 5
kT

6ph0hr~f/f0!MR~M, v#M!
, (4)

where k denotes the Boltzmann constant, andh0 and hr

denote the standard and relative viscosity of the solution,
respectively. This result can then be inserted into the Sved-
berg equation (Eq. 3) to obtains(M). Givens(M) andD(M)
and their inversesM(s) andM(D), the size distributionc(M)
can then easily be transformed into a sedimentation coeffi-
cient distributionc(s) :5 c(M(s)) and a diffusion coefficient
distributionc(D) :5 c(M(D)). These are basically equivalent
descriptions of the distribution, although they represent
different aspects of the particle size distribution.

After calculatings and D for a particle of sizeM, the
numerical integration of the Lamm equation was started
with the initial condition of a uniform concentration
x(r, 0) 5 1, and with graphically predetermined positions of
the meniscus and bottom of the solution column (these can
also be treated as floating parameters to be optimized in the
nonlinear regression). Lamm equation solutions were cal-
culated on a grid of between 200 and 500 radial points. For
low values ofv2s, the finite element method developed by
Claverie et al. (1975) was used, combined with a Crank–
Nicholson scheme (Crank and Nicholson, 1947) and an
algorithm for adaptive step sizes in time (Schuck et al.,
1998). For higher values ofv2s, the moving grid finite
element method (Schuck, 1998) was used. The later method
is particularly well suited for the simulation of sedimenta-
tion of large particles with low diffusion coefficient, be-
cause it remains both numerically stable and relative effi-
cient for very small values ofD.

Analysis of the size distribution c(M)

For very large particles, the influence of diffusion flux on
the particle distribution during the time of the sedimentation
experiment is negligible compared to the sedimentation
flux. As a consequence,L(M, r, t) can be approximated by a
step functionL(M, r, t) 5 exp(22v2sMt) 3 H(r 2 r*(M, t))
at a positionr*(M, t) 5 rmexp(v2sMt) (with the meniscus
positionrm) (Fujita, 1962). In this limiting case,r*(M, t) can
be used to change the integration variable in Eq. 1, and
differentiation with respect to the radiusr directly solves the
integral. Therefore, the derivative of the measured concen-
tration profiles at any time can be directly related to the
particle size distribution (Baldwin and Williams, 1950;
Bridgman, 1942; Fujita, 1962; Signer and Gross, 1934;
Svedberg and Pedersen, 1940). Unfortunately, this approx-
imation holds well only for larger macromolecules and is
not suitable for many biopolymers.

The consideration of diffusion increases the complexity
of Eq. 1, and the smoothness of the sedimentation bound-
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aries of single speciesL(M, r, t) makes Eq. 1 an ill-posed
problem. As is characteristic for such problems, a large set
of differentc(M) distributions may fit the data equally well,
and a straightforward discretization and inversion usually
leads to large, artificial high-frequency oscillations in
c(M).1 It was observed that, for the present problem (in
particular, in the case of narrow distributions), the condition
of non-negativity imposed onc(M) suppresses most of these
oscillations. For further stabilization, regularization was
used. Following the maximum entropy method, a term can
be added to the inverse problem of Eq. 1,

Min
c(M)

HO
i,j
Fa~r i, tj! 2 E c~M!L~M, r i, tj! dMG2

1 a E c~M!ln c~M! dMJ , (5a)

that maximizes the information entropy ofc(M) (Press et al.,
1992; Smith and Grandy, 1985). For any positive value ofa,
this penalty term increases the rms error of the fit as com-
pared to the optimal fit in the absence of regularization (a 5
0), and the increase of the ratio of the variance,x2(a)/
x2(a 5 0), can be correlated with a probabilityP via
F-statistics (Johnson and Straume, 1994). Therefore, F-
statistics can be used to automatically adjust the regulariza-
tion parametera such that the quality of the fit still remains
statistically indistinguishable from the unconstrained fit,
based on a given confidence levelP and on the level of the
noise of the data (Bevington and Robinson, 1992; Prov-
encher, 1979; Provencher, 1982a). The maximum entropy
principle introduces the statistical prior probability that, in
the absence of additional information, all sizesM are
equally likely (this can be modified to incorporate more
specific prior knowledge on the size distribution). The effect
of the maximum entropy regularization term is the selection
of the distributionc(M) with the minimal amount of infor-
mation inc(M) required to fit the raw data.

Alternatively, Tikhonov–Phillips regularization with the
term (Phillips, 1962)

Min
c(M)

HO
i,j
Fa~r i, tj! 2 E c~M!L~M, r i, tj! dMG2

1 a E uc0~M!u2 dMJ (5b)

was used. In contrast to maximum entropy, this procedure
distinguishes the solutionsc(M) according to their smooth-

ness. But, whena is adjusted by the variancex2(a)/x2(a 5
0), it also selects from the set of all distributionsc(M) that
lead to a statistically indistinguishable fit to the raw data the
one distribution that exhibits the highest parsimony. As has
been pointed out by Provencher (1982a), this procedure
selects the solution that has the least amount of detail, but it
ensures that the detail that is contained in the final distri-
bution c(M) is essential to describe the data, and therefore
less likely to be an artifact.

For the numerical calculations, first the continuous molar
mass distributionc(M) of Eq. 1 is approximated by consid-
ering the concentrationsck on a grid ofN molar mass values
Mk,

a~r i, tj! > bi 1 bj 1 O
k51

N

ckL~Mk, r i, tj!, (6)

usually withN 5 100–200. Depending on the optical sys-
tem used for centrifugal data acquisition, which determines
the noise structure ina(r i, tj), Eq. 6 includes the algebraic
time-invariant noise componentsbi, and the radial-invariant
jitter componentsbj, as described in detail in Schuck and
Demeler (1999). This allows the direct fitting of interfer-
ence optical data from samples at low loading concentra-
tions, where the systematic noise components due to optical
imperfections are significant. After solution of the Lamm
equations, normal equations of the least-squares problem
Eq. 6 are formed,

y 5 Ac (7)

with yk 5 O
i,j

â~r i, tj!L̂~Mk, r i, tj!

Akl 5 O
i,j

L̂~Mk, r i, tj!L̂~Ml, r i, tj!,

(using matrix notation) where the hat onâ andL̂ denotes the
algebraic transformations required for the calculation of the
systematic noise parameters (Schuck, 1999), andc denotes
the vector of the concentrationsc1, . . . , cN. The maximum
entropy minimization problem of Eq. 5a then leads to

Min
ck

HcAc 2 2yc 1 a O
k

ck ln ckJ , (8a)

which can be solved by a Levenberg–Marquardt algorithm
as described in (Press et al., 1992). In the case of the
Tikhonov–Phillips regularization Eq. 5b, the resulting min-
imization remains a linear problem that can be directly
solved as

y 5 ~A 1 aB!c, (8b)

whereB denotes the square of the second difference oper-
ator as given in Eq. 18.5.12 of Press et al. (1992). Non-
negativity of the concentrationsck was achieved algebra-

1This can be understood by considering the lemma of Riemann-Lebesgue,
as dm [ *a

bK(x, y)sin(my) dy 3 0 as m 3 ` for an integrable kernel
(Phillips, 1962; Provencher, 1982a).
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ically through the algorithm NNLS by Lawson and Hanson
(1974), adapted for use with the normal equations and
Cholesky decomposition.

As described above, the regularization parametera was
adjusted to reach the predetermined variance ratio calcu-
lated by F-statistics. Because of the large number of data
points involved in the analysis, the influence of the con-
straints on the degrees of freedom is neglected. Unless noted
otherwise, for any given data set, the variance ratio was
calculated corresponding to a probabilityp 5 0.95. With the
usual number of experimental data points in the order of
104–105, the variance increase due to regularization is typ-
ically in the order of 1%. Finally, the distributionck was
rescaled by trapezoidal integration such that the integral
over c(M) equals the total loading concentration.

The computational cost of the method is an important
factor for practical use. It is determined mainly by two
procedures: theN solutions of the Lamm equation and the
N 3 N summations over all data points of the pairwise
products ofL involved in the calculation of the elements Akl

of the normal equations. The latter increases quadratically in
N, and therefore determines the computation time for large
N and large data sets. (The importance of this can be seen by
considering a typical set of interference data: with 100
scans, 1000 data points per scan, andN 5 100, 109 sum-
mation and multiplication operations are required to build
the entire matrixAkl.) For a relatively low number of data
points or a lower resolution inc(M), the solutions of the
Lamm equations determine the computation time. During
Monte Carlo simulations, these two steps need only to be
calculated once. The inversion of Eq. 8 and the adjustment
of a can be accomplished comparatively rapidly. In the
current implementation of the programSEDFIT, when using
moderate amounts of data (e.g., 1–23 104 data points,N 5
100), the distribution can be calculated with a fast PC,
typically, in significantly less than one minute, and one
Monte Carlo iteration in a few seconds.

The sedimentation coefficient distribution analysis in the
absence of diffusion was performed by replacing the Lamm
equation distributions in Eq. 1 by the well-known step
functionsU(r, t) 5 exp(22v2sMt) 3 H(r 2 r*(M, t)) at a
position r*(M, t) 5 rmexp(v2sMt) (Fujita, 1962; Stafford,
1992). This is closely related to the conventionalg*(s)
approximation of the sedimentation coefficient distribution
in the absence of diffusion (Stafford, 1992), and, if applied
to a data set from a small time interval, the numerical results
are equivalent to those derived from dc/dt analysis (P.
Schuck and P. Rossmanith, submitted).

EXPERIMENTAL

Sedimentation velocity experiments were performed with a
Beckman Optima XL-A analytical ultracentrifuge equipped
with absorbance optics. Horse spleen apoferritin (Sigma
A3641) and horse spleen ferritin (Boehringer 197742) were

diluted into PBS, and epon double-sector centerpieces were
filled with 300 ml of the protein sample and PBS, respec-
tively. Using an An50-Ti rotor, the samples were centri-
fuged at a rotor speed of 15,000 rpm at a temperature of
24°C. Scans were acquired at a wavelength of 230 nm in
time intervals of 210 sec. The partial specific volume of
0.73 ml/g for apoferritin monomers was calculated based on
the amino acid composition using the programSEDNTERP

(Laue et al., 1992).g*(s) analysis was performed with the
programDCDT1 (J. S. Philo, 3329 Heatherglow Ct., Thou-
sand Oaks, CA 91360). Dynamic light scattering experi-
ments were conducted with a DynaPro-MSTC200 (Protein
Solutions, Charlottesville, VA), with the temperature con-
trol adjusted to 24°C.

Van-Holde–Weischet analyses were performed according
to methods described in detail in Demeler et al. (1997) and
van Holde and Weischet (1978). Briefly, the sedimentation
boundaries were divided inNf fractions of the plateau signal
c0, and the best least-square radial positions of the boundary
fractions were calculated by averaging the radii of all data
pointsaf with absorbance values within the limits of each
fraction (i.e., (f 2 1)*c0/Nf , af , f*c0/Nf for fraction f).
The first and last fraction was omitted in the further analysis
because of their larger noise in their calculated radial posi-
tions.Nf was chosen such that all fractions had at least one
data point in each scan. Apparents-values were calculated,
and s-values at infinite time were determined by least-
squares extrapolation in at20.5 scale, as described in van
Holde and Weischet (1978), defining an integral sedimen-
tation coefficient distributionG(s).

All computational methods were implemented into the
Windows-based ultracentrifugal analysis programSEDFIT,
which is available on request, or can be downloaded from
http://www.biochem.uthscsa.edu/auc/software, and from the
RASMB network at ftp://rasmb.bbri.org/rasmb/spin/ms_dos/.

RESULTS

The resolution of the method will be examined first for the
case of relatively small molecules, where the influence of
diffusion is comparatively large and no visual separation
during the sedimentation process is achieved. Figure 1A
shows simulated sedimentation profiles of a discrete mix-
ture of two spherical molecules of molar masses 30,000 and
50,000, and sedimentation coefficients of 3.4 and 4.78 S,
respectively, at loading concentrations of 0.5 for each spe-
cies, superimposed by a normally distributed error of 0.01.
Also shown in Fig. 1A are the best-fit single-component
sedimentation profiles (dashed lines), which resulted in an
apparent molar mass of 25,700 and a sedimentation coeffi-
cient of 4.1 S. The unphysical combination of such a low
value for the apparent molar mass (or high value for the
apparent diffusion coefficient, respectively) and this rela-
tively high value for the sedimentation coefficient is a result
of the broadening of the sedimentation boundary due to the
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underlying heterogeneity. It should be noted that the fit is
not of acceptable quality (rms error5 0.0155), because a
single-component model cannot describe the initially sharp
but rapidly broadening sedimentation boundary well. This
distinct difference between the diffusion broadening of the
sedimentation boundary of a single sedimenting component,
and the boundary shape of a heterogeneous mixture, pro-
vides the potential for gaining information on the size
distribution. This difference will be larger when a larger
relative separation of the size of the species is present, and
in cases of larger particles with smaller diffusion coeffi-
cients (see Fig. 4B below).

The calculation of the molar mass distribution is per-
formed using Eq. 8, on a grid ofN 5 100 molar-mass values
between 20,000 and 70,000. For the calculation of both
sedimentation and diffusion coefficientss(M) and D(M)
according to Eqs. 3 and 4, first spherical particles (f/f0 5 1)
with a partial-specific volumev# 5 0.73 cm3/g were assumed
(the values identical to those used for generating the data).
In the absence of regularization (a 5 0) this results in sharp
peaks at the correct molar masses underlying the simulation
(Fig. 1B). However, the location of these peaks depends
strongly on the details of the simulated data and of the
model. This is illustrated by the effect of using slightly
incorrect frictional ratios, which leads to shifts of the loca-
tion of these sharp peaks, or to fragmentation into two
groups of 2–3 peaks, without significantly changing the rms
error of the fit (,0.0101) (Fig. 1B). This clearly demon-
strates that the direct solution of Eq. 6 without regulariza-
tion results in an unreliable level of detail. When the pa-
rameter a for the maximum entropy regularization is
adjusted to a probability ofp 5 0.68, significantly smoother
curves are obtained, which are much more robust against
small errors in the model. The two components can still be
clearly resolved (Fig. 1B). Because the rms error of the fit
is not significantly worse (,0.0104) than the fits without
regularization, these curves reflect much better the informa-
tion that can be extracted from the distribution analysis of
the sedimentation data. Similar results were found when
studying discrete distributions in a larger size range, or
when using the Tikhonov–Phillips regularization (data not
shown). Under comparable conditions with simulated noisy
data, two discrete species with a 30% relative difference of
the molar mass in the range of 100,000 and a 20% relative
difference in the range of 1,000,000 could be resolved (data
not shown).

FIGURE 1 (A) Simulated sedimentation profiles of a discrete mixture of
two components of molar masses 30,000 and 50,000, and sedimentation
coefficients of 3.4 and 4.78 S, respectively, each with a partial specific
volume v# 5 0.73 cm3/g and a frictional ratiof/f0 5 1, at a loading
concentration of 0.5 (solid lines). Simulated conditions:r 5 1.0067 g/cm3,
hr 5 1, v 5 50,000 rpm,T 5 20°C, radial data interval 0.003 cm, and
time-interval of scans 500 sec, Gaussian distributed error of measurement
of 0.01. Included are the best-fit single-component sedimentation profiles
(dashed lines), with a molar mass of 25,700 and a sedimentation coefficient
of 4.1 S, with an rms error of 0.0155. (B) Calculated distributionsc(M)
based on Eq. 8, withN 5 100, and a baseline offset as a floating parameter.
Shown are results fora 5 0 (distributions with spikes, at 10-fold reduced
scale) and with maximum entropy regularization anda adjusted to a
probability ofp 5 0.68 (smooth curves). The distributions calculated using
the correct parameters for particle density and frictional ratio are shown as
bold solid lines. Results of the analysis with incorrect parameters:f/f0 5
1.03 (dotted lines), f/f0 5 1.04 (dashed lines), f/f0 5 1.05 andv# 5 0.72
cm3/g (dash-dot lines). Results of larger deviations of the frictional ratio
(f/f0 5 1.2) are offset by 13 1024. (C) Transformation in sedimentation
coefficient distributionsc(s) with a adjusted top 5 0.683. Using a value
for the frictional ratio off/f0 5 1.0 (bold solid line) leads to the correct
relationshipD(s) between the diffusion and the sediment coefficient. Mod-
els with f/f0 5 1.1, f/f0 5 1.3, andf/f0 5 1.5 lead to an underestimation of
the diffusion coefficients (dotted lines). The limit of no diffusion is
presented as the dashed line. Using the parametersf/f0 5 1.0 withv# 5 0.70

cm3/g leads to an overestimation of the diffusion (dash-dot-dot line). (D)
Result of ag*(s) analysis based on the dc/dt data transformation (solid
line), and, for comparison, the distributions obtained forD 5 0, and for the
correctD(s) from (C) (dashed lines). The integral sedimentation coefficient
distribution of the van Holde–Weischet analysis is plotted as a function of
the boundary fraction (–o–).
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If the assumptions on the shape of the particles implied
by f/f0 5 1 and the assumed value ofv# do not lead to a
reasonable approximation ofs(M) andD(M), however, the
regularized distributionsc(M) are significantly broader, lim-
iting the resolution of the two species (Fig. 1B, offset data).
It should be noted that this is accompanied by an increase of
the rms error of the fit (9% increase for the data shown with
f/f0 5 1.2 in Fig. 1B). In cases where at least the assumption
of shape similarity among the species is correct, this in-
crease of the rms error can be used as the basis for nonlinear
regression and fitting for the parameterf/f0. (In the imple-
mentation used inSEDFIT with a simplex routine,N 5 50 and
p 5 0.68, this converged rapidly to a best-fit value forf/f0
of 1.005.)

An alternative representation of the distribution is the
transformation into a sedimentation coefficient distribution
c(s) using thes(M) relationship from the Svedberg equation
(Eq. 3) (Fig. 1C). The distributionsc(s) are much more
robust thanc(M) against poor assumptions for the shape of
the molecules: whereas errors in the frictional ratios lead to
overall translations ofc(M), these errors only affect the
resolution inc(s), but not the location of the peaks. If Eq. 1
is used in the limit of no diffusion, a broad apparent sedi-
mentation coefficient distribution is obtained. With esti-
mates of the hydrodynamic parameters that lead to a good
approximation of the diffusion coefficient,c(s) results in
two distinct peaks. Errors in the frictional ratios that pro-
duce too low diffusion coefficients in Eq. 4 led to broaden-
ing of c(s), whereas errors that produce too large diffusion
coefficients (such as the case of the too small value ofv# 5
0.70 cm3/g shown in Fig. 1C) led to artificially sharp
distributionsc(s). A comparison with the established meth-
ods shows that the results atD 5 0 are very similar to those
from the time-derivative g*(s) analysis (Stafford, 1992),
which produces apparent sedimentation coefficient distribu-
tions in the approximation of no diffusion, whereas even
moderately precise estimates of the frictional ratios (or
diffusion coefficient, respectively) lead to peak sedimenta-
tion coefficients consistent with those obtained by the van
Holde–Weischet method, which corrects for diffusion
broadening of the boundary (Fig. 1D) (van Holde and
Weischet, 1978).

The influence of the regularization parameter on the
calculatedc(M) in the case of discrete distributions (d-
functions) is that of a broadening of the peaks inc(M) (in
case of second-derivative regularization approximately
Gaussian shaped), with a half-width that increases witha
(Figs. 1B and 2C). For the discrete distribution of Fig. 1,
increasing the regularization fromp 5 0.68 to 0.95 still
allows clear distinction of the two peaks (with a ratio ofc(s)
height at the peak to the enclosed minimum of;4:1, data
not shown).

To study the effect of regularization for broader, contin-
uous distributions, noisy sedimentation data based on model
distributions in different size ranges were simulated. Figure

2, A andB, shows the analysis of a step-function model for
a homogeneous size distribution in the molar mass range
between 30,000 and 70,000 (Fig. 2A) and at 1000-fold
higher molar masses (Fig. 2B). Without regularization (a 5
0), as can be expected, a series of sharp peaks were ob-
tained, which, in their location and height, strongly depend
on the noise of the data. Already with a very small degree
of regularization (a variance increase ofDsa/s0 , 0.1%,
adjusted top 5 0.55), the analysis resulted in continuous
distributions. However, they still can exhibit oscillations
that mimic a structured, apparently multimodal distribution
(this was observed in particular with the second derivative
regularization, data not shown). When the regularization
parameter was increased to a level corresponding top 5
0.68 (Dsa/s0 ; 1%) or p 5 0.95, which selects the most
parsimonious of allc(M) distributions that lead to statisti-
cally comparable fits of the sedimentation data, in most
cases, a relatively unstructured distribution was obtained in
which misleading peaks were absent. Further increase of the
regularization parameter to a significantly larger value of
Dsa/s0 5 10% (p . 0.99) only slightly worsened the
resemblance of the calculated and the underlying model
distributions (Fig. 2,dash-dot lines). As illustrated in Fig. 2,
A andB, the resolution increased slowly with increasing size
of the particles. Also, the results were found to improve
when studying model distributions with higher degree of
smoothness. This is illustrated in Fig. 2C, where the cal-
culatedc(M) distributions are shown for simulated noisy
sedimentation data that are based on a size-distribution
model combining a Gaussian and ad-function.

Again, if the distributions are transformed into ac(s)
distribution, they can be easily compared with the integral
sedimentation coefficient distributionsG(s) from the van
Holde–Weischet analysis (insets of Fig. 2). The results of
both methods were found to be very consistent. However,
the distributionsc(s) appear to have higher information
content in the description of the shape of the distributions:
whereas theG(s) curves from the van Holde–Weischet
analysis of Figs. 1D and 2A are qualitatively similar, the
correspondingc(s) profiles resolve the difference between a
broad continuous and a discrete bimodal distribution better.

As a first application of the method to discrete mixtures
of globular proteins, the interference profiles from sedimen-
tation experiments with myoglobin and gamma globulin
were analyzed (Fig. 3,A–C). These data have been pub-
lished before (Schuck and Demeler, 1999) in the context of
demonstrating the validity of the algebraic systematic noise-
reduction procedure developed for the analysis of interfer-
ence optical data. In the previous analysis, known partial
specific volumes and molar masses of the proteins had been
used as prior knowledge. In the present context, to evaluate
the robustness of the size-distribution analysis method, the
data were reanalyzed without this prior knowledge, but
instead making the assumption of having globular proteins
with approximately spherical shapes (f/f0 5 1), and with an
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estimate of the partial specific volume of 0.73 cm3/g. As is
shown in Fig. 3D, the calculated distributionsc(M) andc(s)
exhibit well-defined, sharp peaks, as can be expected for
this discrete mixture of proteins. Because these proteins are
not truly spherical, the molar mass values at the peak
maxima ofc(M) (13,500–15,800 for myoglobin, 87,400–
93,700 for gamma globulin monomer, 174,000–190,000 for
the dimer) do not coincide with the true molar masses of
these species, but instead represent their molar masses ap-

FIGURE 2 Calculated distributionsc(M) of simulated sedimentation ve-
locity profiles of continuous model distributions. Sedimentation data were
simulated for a solution column of 1-cm length, assuming spherical parti-
cles (f/f0 5 1, v# 3 r 5 0.73,hr 5 1, T 5 20°C) with the continuous molar
mass distribution models (bold dotted line) given by (A) a step function
centered at 50 kDa, (B) a step-function centered at 50 MDa, and (C) a
Gaussian at 500 kDa combined with a delta-function at 800 kDa, at rotor
speeds of 50,000, 5,000, and 30,000 rpm, respectively. The total loading
signal was 1, and normally distributed noise of 0.01 was added. Twenty
profiles were included in the sedimentation analysis, spaced in time inter-
vals of 500, 300, and 300 sec, respectively, producing sedimentation
patterns similar to those in Fig. 1A. The analysis was performed including
a floating baseline parameter, and using the correct hydrodynamic param-
eters. Data are shown without regularization (a 5 0, thin dash-dot-dot
lines, reduced in scale by a factor of 20), and with maximum entropy with
a adjusted top 5 0.55 (Dsa/s0 , 0.1%) (dashed line), a adjusted top 5
0.68 (Dsa/s0 ; 1%) (bold solid line), anda adjusted toDsa/s0 5 10%
(p . 99.9%) (dash-dot line). Panel Ashows a second distribution without
regularization (offset by 0.5), which is based on replicated simulation,
differing only in the details of the normally distributed noise (at the same
rms). The insets show the integral sedimentation coefficient distributions
G(s) from a van Holde–Weischet analysis, plotted as boundary fraction
versuss-value, and, for comparison, a (rescaled) transformation of the
calculated size distributions atp 5 0.68 intoc(s) distributions.

FIGURE 3 Interference fringe patterns of sedimentation velocity exper-
iments with (A) myoglobin, (B) gamma globulin, and (C) a mixture of both
(v 5 40,000 rpm,T 5 25°C, 20 scans in time intervals of 500 sec were
analyzed). (D) calculated molar mass distributionsc(M) with maximum
entropy regularization atp 5 0.68 (a variance increase of 0.6%), with a
resolution ofN 5 150 molar mass values from 1,000 to 500,000, using a
constantf/f0 of 1 and a partial specific volume value of 0.73 cm3/g (r 5
1.004 g/cm3, hr 5 0.9). The algebraic systematic noise was calculated
according to Schuck and Demeler (1999). The analysis resulted in an rms
error of 0.0072 fringes for myoglobin (dotted line), 0.0067 fringes for
gamma globulin (dashed line), and 0.0049 fringes for the mixture (solid
line), respectively. The inset shows the sedimentation coefficient distribu-
tions c(s) obtained witha adjusted to a confidence limit ofp 5 0.95.
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proximately reduced by the frictional ratio (f/f0 ; 1.5 for the
IgG species, based on the earlier results). This problem is
absent in the sedimentation coefficient distributionc(s).
Both distributionsc(M) andc(s) give an excellent fit to the
data, and reflect the main features of the samples, i.e., the
presence of a small component, and the presence of two
larger components with a molar mass ratio of 2:1. When
using the Tikhonov–Phillips regularization (Eq. 5b), the
resulting distributions suggest the presence of a small
amount of aggregates much larger than the IgG dimer (data
not shown), but this cannot be resolved well, and is not
observed with the maximum entropy regularization. In both
methods, an artifact is visible at very small molar masses in
the distributions where the sedimentation profiles are cor-
related with the baseline parameters.

As an example for the application of the method to a
continuous mass distribution, the sedimentation velocity
profiles of a ferritin sample were studied. Ferritin is well-
known to exhibit a broad distribution in the iron content
(see, e.g., Leapman and Hunt, 1995). Apoferritin and fer-
ritin do not differ in their sizes, but only in their molar
masses and partial specific volumes, depending on the num-
ber of iron molecules in the core. As a consequence, the
diffusion coefficient should remain constant, and the sedi-
mentation coefficient distributions(M) according to Eq. 3
can be directly related to the buoyant molar mass distribu-
tion c(M*). Dynamic light-scattering experiments with the
ferritin and the apoferritin samples gave autocorrelation
functions that were very well described by that of a single
species with nearly identical diffusion coefficients of
3.373 1027 and 3.113 1027 cm2/sec, and hydrodynamic
radii of 6.4 and 6.7 nm, respectively. This is consistent with
the radius of;6.5 nm measured for murine ferritin by
electron microscopy (Ohkuma et al., 1976). In the analysis
of the sedimentation profiles of apoferritin (Fig. 4A), when
constraining the diffusion coefficient to a value of 3.373
1027 cm2/sec, a reasonable fit was obtained with a sedi-
mentation coefficientsw, 20 of 18.9 S, which corresponds to
a molar mass of;540,000 (rms error5 0.0113 OD; a
slightly better fit of rms error5 0.0100 OD could be
obtained by taking into account free monomers of ferritin).
In contrast, the sedimentation velocity profiles of the iron-
loaded ferritin could not be well described by the single-
species model with the predetermined diffusion coefficient
(rms error5 0.0321,sw 5 67.1 S, Fig. 4B), because the
broadening of the sedimentation boundary is much larger
than that of a species withD 5 3.37 3 1027 cm2/sec,
indicated by the dashed line in Fig. 4B. This suggests strong
heterogeneity of the ferritin sample.

The calculated buoyant molar mass distributionsc(M*) of
apoferritin, ferritin, and a mixture are shown in Fig. 5A. All
result in very good fits of the data, with rms errors of;
0.009 OD. For the apoferritin, the majority of the material is
in a single peak with a maximum at a buoyant molar mass
of 140,000 (Fig. 5A, dotted line). The presence of a small

fraction of material of approximately double the size of the
main peak is suggested. Thec(M*) distribution of ferritin is
characterized by a broad, asymmetric peak with a maximum
at a buoyant molar mass of 540,000, but also exhibiting a
broad distribution of smaller material, including molecules
of the size of apoferritin (Fig. 5A, dashed line). For the
mixture, the clearly bimodal sedimentation profiles of Fig.
4 C translate in thec(M*) distribution into a bimodal mass
distribution, with maxima at buoyant molar mass values
of 140,000 and 530,000 (Fig. 5A, solid line). The fea-
tures of the ferritin distribution seem to be reasonably well
reproduced.

It should be noted that size-distribution of the mixture
exhibits a small oscillatory finer structure, which does not
appear in the ferritin distribution (Fig. 5A, dashedandsolid

FIGURE 4 Sedimentation velocity absorbance profiles of (A) apofer-
ritin, (B) ferritin, and (C) a mixture, obtained at a rotor speed of 15,000
rpm, rotor temperature of 24°C, scanned at a wavelength of 230 nm.
Equivalent subsets with time increments of;200 sec are shown. The
best-fit distributions from thec(M*) analysis (as described in Fig. 5A) are
superimposed on the experimental data. (B) also shows the best-fit distri-
bution to the first and last scan using a single-species sedimentation model
with the predetermined diffusion coefficient of 3.373 1027 cm2/sec
(dashed lines).
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line). To study whether these oscillations are essential fea-
tures of the data, and how sensitive they are to the noise in
the raw data, we performed Monte Carlo simulations. Sim-
ulated data sets were replicated (n 5 103) based on the
calculated best-fit sedimentation profiles as shown in Fig.
4 C, with normally distributed noise added in the magnitude
of the rms error of the fit. The inset in Fig. 5A shows the
mean distributionc(M*) and the 5% and 95% contours,
respectively. In this statistical average,c(M*) appears
slightly smoother, which demonstrates that some of the
oscillatory fine structure inc(M*) can be governed by noise
in the data, and may not be features of the true underlying
particle size distribution. Nevertheless, comparing the dis-
tributions obtained from the Monte Carlo analysis and the
results from van Holde–Weischet analysis, although they
are qualitatively consistent, it appears that a higher level of
detail can be extracted from the Lamm equation model.

A basic assumption of the distribution analysis is that the
observed sedimentation data are a simple superposition of

the sedimentation profiles of noninteracting macromole-
cules (Eq. 1). However, because of the practical importance
of this case for the study of proteins, the results obtained
when applied to a system of interacting species was inves-
tigated. The sedimentation process was simulated for a rapid
monomer–dimer and monomer–trimer self-association, us-
ing the Lamm equation methods described in Cox, (1969)
and Schuck (1998), with 1% normally distributed noise. The
conditions of the sedimentation were chosen to generate
profiles generally similar to those in Fig. 1A; as can be
expected for these systems, no separation of sedimentation
boundaries was achieved (data not shown). The sedimenta-
tion profiles of these self-associating systems could be fitted
very well by the continuous mass distribution (data not
shown), which, in the absence of regularization, resulted in
a large number of discrete peaks inc(M) (see, e.g., the
dotted line in Fig. 6C). But, in contrast to discrete mass
distributions of noninteracting species, small regularization
at a level p 5 0.68 already led to very broad, smooth
distributions. This result was qualitatively independent on
the regularization procedure (data not shown). Compared to
the relatively sharp distributions obtained from a superpo-
sition of noninteracting species under identical conditions
(Fig. 6, dashed lines), the spreading of the sedimentation
boundary that is caused by the rapid self-association results
in an apparent population of macromolecules with a broad
range of intermediate sizes (Fig. 6,bold lines), with the
positions of the maxima dependent on the loading concen-
tration and the association constant. This is analogous to the
results from the van Holde–Weischet analysis, where the
case of interacting and noninteracting monomers and dimers
can also be clearly distinguished from the positive slope and
the range of sedimentation coefficients inG(s) (Fig. 6B).

DISCUSSION

The present paper describes a method for direct boundary
modeling for the size-distribution analysis in sedimentation
velocity analytical ultracentrifugation. Because the contin-
uous size distributions are approximated by a superposition
of Lamm equation solutions, the effects of diffusion can be
taken into account, and a relative high resolution can be
achieved for small molecules in the size range of proteins.

Although unraveling of diffusion effects in this way was
found to be similarly effective as the extrapolation to infi-
nite time in the van Holde–Weischet method (van Holde
and Weischet, 1978), the direct boundary modeling can
offer several advantages. First, because the Lamm equation
method can take into account the end effects of the solution
column, there is no requirement for a solvent and solution
plateau to be established, which allows the analysis of the
data from an entire sedimentation experiment. This ability
to make maximal use of the information of the boundary
spreading observed over a large time period enhances the
ability for distinguishing boundary spreading due to size

FIGURE 5 Buoyant molar mass distributions of apoferritin (dotted line),
ferritin (dashed line), and the mixture (solid line), from the analysis of the
data shown in Fig. 4, using the predetermined value ofD 5 3.373 1027

cm2/sec, withN 5 150, maximum entropya adjusted top 5 0.95. For
comparison, the data of the mixture are scaled by a factor of 1.4. The inset
shows the result of a Monte Carlo simulation (103 replicates) based on the
best-fit calculated sedimentation data and rms error from the analysis of the
apoferritin/ferritin mixture. For each molar mass value, the mean (M), the
5%, and the 95% levels of the set ofc(M) data obtained are shown. (B) Van
Holde–Weischet analysis of appropriate data subsets of the same experi-
ments with apoferritin (‚), ferritin (M) and the mixture (F).
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heterogeneity from simple diffusional spreading. This, com-
bined with better statistical properties of a direct fit, seems
to be the origin of the higher level of detail in thec(M) as

compared to theG(s) curves. The new method can also be
applied to experiments of mixtures that include small and
rapidly diffusing material, or samples with a very high
degree of heterogeneity. Second, as an explicit boundary
model, the method can use the algebraic noise decomposi-
tion techniques (Schuck and Demeler, 1999), and be di-
rectly applied to interference optical data where a signifi-
cant systematic time-invariant background profile can be
superimposed to the macromolecular sedimentation pro-
files. Third, the analysis also lends itself to be extended to
a global fit of several experiments, and allows to incorporate
knowledge on the distribution into the analysis.

The method presented here could be considered interme-
diate between a more conventional direct boundary fitting
method that uses an explicit single- (or few-) component
Lamm equation model (Demeler and Saber, 1998; Philo,
1997; Schuck, 1998; Schuck et al., 1998), and a relatively
model-free data transformation, such as the van Holde–
Weischet method to obtainG(s) (Demeler et al., 1997; van
Holde and Weischet, 1978), or the dc/dr (Baldwin and
Williams, 1950; Bridgman, 1942; Fujita, 1962; Signer and
Gross, 1934; Svedberg and Pedersen, 1940) and dc/dt (Staf-
ford, 1992) transformations used to obtaing*(s). The size-
distribution analysis proposed here is model-free in a sense
that it imposes virtually no constraints on the number and
size of the species present. However, in contrast to the data
transformations involved in the van Holde–Weischet
method and in theg*(s) methods, it requires prior knowl-
edge on the approximate density and shape of the mole-
cules, and the density and viscosity of the solvent. When
available, this knowledge can be used to enhance the reso-
lution of the sedimentation coefficient distribution and
transform it into a size distributionc(M).

The relationship and the resolution of the different meth-
ods can be understood by considering different degrees of
diffusion incorporated into the Lamm equation model (Fig.
1, C and D). In the absence of any diffusion, as can be
expected, the distributionc(s) resembles an apparent sedi-
mentation coefficient distributiong*(s). Even moderately
precise estimates of the hydrodynamic shape and relatively
low estimates of the diffusion coefficient leads to a substan-
tial increase in resolution ofc(s), which then defines a range
of sedimentation coefficients of the sample consistent and
comparable withG(s). It is important to note that the van
Holde–Weischet method is very powerful in indicating the
range of the true sedimentation coefficients of the sample,
without further assumptions. If prior knowledge can be
used, however,c(s) seems to have a higher resolution. This
is indicated by a comparison of theG(s) from the bimodal
discrete distribution of Fig. 1D and the broader distribution
of Fig. 2A, where qualitatively very similarG(s) distribu-
tions were obtained, whereas the correspondingc(s) could
distinguish the distributions better. Also, the comparison of
the c(M*) and theG(s) distributions of the ferritin experi-
ment (Fig. 5) indicates slightly higher information content

FIGURE 6 Analysis of simulated sedimentation profiles of discrete
components in rapid monomer–dimer (A andB) and monomer–trimer (C)
self-association equilibrium. (A) Simulated monomer–dimer data based on
a monomer molar mass of 100,000,f/f0 5 1.0, andv# 5 0.73 cm3/g.
Sedimentation profiles were generated at a total loading concentration of 1,
with 0.01 normally distributed noise, and with dimerization constants
leading to initial monomer/dimer ratios of 26, 5.9, 2.2, 1, 0.5, 0.25, and
0.11, respectively (solid lines). Shown are the calculated mass distributions
c(M) with N 5 100, maximum entropy regularization witha adjusted to
p 5 0.68. The distributions obtained at equal loading concentrations of
monomer and oligomer are highlighted (bold lines), and, for comparison,
the distributions from the sedimentation profiles of a noninteracting mix-
ture of species at equal concentrations are shown (dashed lines). (B) The
same data analyzed by van Holde–Weischet analysis. The integral sedi-
mentation coefficient distributionG(s) is given for a mixture of monomer
and dimer at equal loading concentrations in rapid self-association equi-
librium (bold line) and noninteracting (dashed line). (C) Monomer–trimer
system, with a monomer molar mass of 100,000,f/f0 5 1.3, andv# 5 0.73
cm3/g. Simulations were performed with an association constant for trimer
formation of 4, and total concentrations of 0.1, 1, and 10, respectively, each
with 1% normally distributed noise (eachc(M) was scaled to a total loading
concentration of 1). The distribution at a total concentration of 1 is also
shown without regularization (dotted line).
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of the Lamm equation analysis. However, because of the
well-known tendency of the inversion of integral equations
to produce oscillations, some of the details inc(M) can be
deceptive. This is illustrated by the Monte Carlo simulations
in Fig. 5, and represents a major technical difficulty with the
presented approach.

The underlying problem is that Eq. 1 is an ill-posed
problem for smooth kernels (Phillips, 1962). This has been
extensively studied (Amato and Hughes, 1991; Hansen,
1992; Phillips, 1962), and is well known to occur in many
biophysical techniques, for example, in dynamic light scat-
tering (Provencher, 1979). Because, in a direct inversion,
the size-distribution analysis in Eq. 1 tends to produce large
oscillations inc(M), the analysis requires regularization and
adjustment to the level of detail that one can reliably extract
from the experimental data. The approach used here closely
followed the technique of adjusting the regularization pa-
rameter by controlling the variance increase of the fit that is
introduced by the regularization constraint, a technique de-
veloped by Provencher and implemented in the program
CONTIN (Provencher, 1982b). As regularization methods,
maximum entropy regularization and Tikhonov–Phillips
regularization with a second derivative operator were stud-
ied. Maximum entropy performed slightly better, because it
could create sharper peaks for discrete size distributions and
had a somewhat lower tendency to exhibit oscillations for
broader distributions. Overall, the results are consistent with
the previous findings from numerical simulations (Amato
and Hughes, 1991) and from studies of broadly distributed
biopolymers by light scattering (Provencher, 1992). Alter-
native numerical methods to avoid artificial peaks, such as
described by Provencher (1992) could be adapted.

If one compares the physical processes observed for
particle-size analysis in sedimentation velocity ultracentrif-
ugation with those of dynamic light scattering, centrifuga-
tion has a strongly size-dependent directed migration in the
centrifugal field in addition to the diffusion. Therefore, it
appears that this additional source of information in centrif-
ugal data should make the choice of the regularization
procedure less critical. In both the experimental and the
simulated data with continuous distributions, it was found
that it is advantageous to slightly increase the regularization
parameter to suppress artificial oscillations. This may be
due to the inactivity of the non-negativity constraints in the
case of broad distributions. Clearly, the adjustment of the
regularization parameter to obtain the optimal degree of
information will require experience, and may depend on
knowledge of the type of sample under study. This problem
of ill-posed analysis can also be minimized experimentally
at high rotor speeds and long solution columns, where the
diffusional spreading of the sedimentation boundaries is
smallest, and their translation is largest.

Another difficulty in the presented approach is the re-
quirement for estimates of the partial specific volume and
the hydrodynamic frictional ratio, which basically provides

the information on how much boundary spreading one
would expect for a discrete single species of any given size.
Fortunately, there are many alternative ways of obtaining
such hydrodynamic prior knowledge, and many cases in
which good approximations can be made (see above)
(Frigon and Timasheff, 1975). Although the quantitative
aspects of the calculated distributions depend on this prior
knowledge, the method was found robust in reporting the
essential qualitative features of the distributions even when
using slightly incorrect size and shape assumptions (Fig.
3 D). Furthermore, if the distribution is transformed to a
sedimentation coefficient distributionc(s), only the resolu-
tion of the distribution was found to suffer slightly from
errors in f/f0 and v#. (In c(M), these errors additionally
influence the location of the peaks, which will depend
linearly on f/f0, and approximately with a2⁄3 power depen-
dence onv#.) However, even with relatively gross estimates
of the hydrodynamic parameters, the sedimentation coeffi-
cient distributionc(s) can have a higher resolution than a
sedimentation coefficient distribution that is uncorrected for
diffusion (Figs. 1,C andD, and 3D).

The utility of the method, if applied to protein mixtures,
is illustrated in Fig. 3, where all three species, including a
small component, can be clearly resolved. Beyond the cal-
culation of molar mass estimates for species in discrete
protein mixtures, which could be useful for diagnostics of
protein homogeneity and aggregation, the method may also
allow the diagnosis of the presence and stoichiometry of fast
reversible interactions. Similar to the broadening of theG(s)
distributions obtained from van Holde–Weischet analysis of
a reaction boundary, very broad apparentc(M) and c(s)
distributions were obtained for interacting systems (Fig. 6).
In both methods, this broadening can be observed without
macroscopic separation of the species, such as in monomer–
dimer and monomer–trimer self-associations (Gilbert, 1955;
Gilbert and Gilbert, 1973), which is a reflection of the
boundary spreading in a reaction boundary being different
from that of noninteracting species. The possibility of a
detailed quantitative analysis of these apparentc(M) curves
beyond their diagnostic utility is unclear. However, once the
stoichiometry of an interaction has been identified, more
direct modeling with the Lamm equation expanded by the
reaction terms seems advantageous and practical (see, for
example, Claverie, 1976; Cox, 1969; Frigon and Timasheff,
1975; Goad and Cann, 1969; Schuck, 1998; Stafford, 1998).

The characterization of broad continuous distributions is
an important application, and a ferritin sample was used as
a model system. In conventional sedimentation velocity
analysis apoferritin showed a molar mass that is slightly
high compared to the previously determined value of
460,000 (Stefanini et al., 1982), this could be due to a small
fraction of aggregates, such as those observed by flow field
flow fractionation in Pauck and Co¨lfen (1998). Interest-
ingly, in the size-distribution analysis of the apoferritin, a
small peak in the size range of double the main peak was
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found. In the size-distributions of the ferritin sample, a
small degree of artificial oscillations inc(M*) was identified
by Monte Carlo simulation. These problems could be char-
acteristic of the study of broadly distributed macromole-
cules. However, the gross shape ofc(M*) was reproducible
and appears reasonable. The difference in the buoyant mass
between apoferritin and ferritin corresponds to;4000–
5000 iron atoms per molecule, consistent with values for
maximal loading found in Leapman and Hunt (1995). Fur-
ther studies are in progress to explore the properties of the
new method in more detail when applied to the character-
ization of broad distributions, such as emulsions (M. Pe-
rugini, P. Schuck, and G. Howlett, in preparation) and
polystyrene.

In summary, it was shown that an explicit Lamm equation
model for continuous size-distribution analysis can be for-
mulated and applied. Equipped with maximum entropy reg-
ularization, it reveals relatively high-resolution distribu-
tions, which were tested with simulated and experimental
data of both discrete and broad continuous distributions.
Although the results obtained are qualitatively comparable
to those from van Holde–Weischet analysis, providing a
higher level of detail, the requirements and properties are
much different from those of the van Holde–Weischet
method and the dc/dt- or dc/dr-basedg*(s) method. This
suggests that it could be a useful new tool for ultracentrifu-
gal studies. Furthermore, the described method can be ex-
tended to global analyses, for example, of several experi-
ments at different rotor speeds, and can be adapted to
different experimental protocols such as gravitational-
sweep sedimentation (Ma¨chtle, 1999). Also, the explicit
Lamm equation model for continuous distributions could be
used to combine the analysis of sedimentation velocity and
dynamic light-scattering experiments, which may provide a
significant increase in resolution, and possibly additional
information on the hydrodynamic shape of the macromole-
cules as a function of their size.
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